圆的周长教案

时间:2024-02-22 10:49:21
圆的周长教案模板合集9篇

圆的周长教案模板合集9篇

作为一名老师,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。那么什么样的教案才是好的呢?下面是小编收集整理的圆的周长教案9篇,希望能够帮助到大家。

圆的周长教案 篇1

教材分析

(可以从以下几个方面进行阐述,不必面面俱到)

l 课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

l 本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

学情分析

(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)

教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

l 学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。

l 学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

教学目标

(教学目标的确定应注意按照新课程的三维目标体系进行分析)

1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

教学重点和难点

教学重点:正确计算圆的周长

教学难点:理解圆周率的意义,推倒圆周长的计算公式。

教学流程示意

(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)

一、创设情境,认识周长

二、小组合作,探究求圆周长的方法

三、运用知识,解决问题

四、课堂总结

五、布置作业

六、教学反思

教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)

圆的周长教案 篇2

第一单元圆的周长和面积

一.本单元的基础知识

本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

二.本单元的教学内容

P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

三.本单元的教学目标

1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。

四.本单元重难点和关键

1.教学重点:求圆的周长与面积。

2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

五.本单元的教学课时

13课时

圆的周长教案 篇3

教学目标:

用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。

教学过程:

一、探究解决问题的方法。

⑴出示情境图。

⑵介绍解决方法。

1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。

2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。

⑶沟通两种方法间的联系。

师生一起解方程:x=251.2÷3.14,x=80。

观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

⑷联想。

想:算出圆的直径有什么价值。

可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

二、多种练习,内化知识。

⑴独立完成试一试和练一练。

⑵解答练习十八第6题。

独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

⑶解答练习十八第8题。

学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

三、作业,练习十八第7题。

圆的周长教案 篇4

教学内容:九年义务教育人教版第11册

教学目标:

1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的 周长计算公式;

2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;

3、培养学生情感,使学生受到爱国主义教育。

教学重点:推导圆周长的计算公式。

教学难点:理解圆周率的意义。

教具准备:多媒体课件、直尺、剪刀 ……此处隐藏4729个字……量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

教师在分组活动中采集到的数据。(是后加的,时加的)

序号

周长(c)cm

直径(d)cm

周长是直径的几倍

1

15.5

5

3.10

2

8.9

2.9

3.07

3

14

4.3

3.26

4

7.6

2.5

3.04

5

8.9

2.7

3.30

⑵合理,得出公式,

看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

⑶介绍祖冲之。

四、利用新知解决简单的数学问题。

⑴说出计算周长的算式。

⑵口答练习十八1~2。

⑶作业练习十八3~4。

圆的周长教案 篇8

教学内容:

圆的周长(小学数学九年制义务教材第十册).

教学目的:

1.让学生知道什么是圆的周长.

2.理解圆周率的意义.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的意义.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是圆的周长?

板书:围成圆的曲线的长是圆的周长.

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

三、互动

请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑演示

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.

七、看书后回答问题:

1.是谁把圆周率的值精确计算到6位小数?

2.什么叫圆周率?

3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?

现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)

八、出示例1:

一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

(得数保留两位小数)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:d=1.95 单位:米

c=d

=3.141.95

=6.123

6.12(米)

答:车轮滚动一周约前进6.12米.

九、课堂练习:

1.投影:计算下面图形的周长.

2.判断下面各题(正确的出示,错误的出示)

(1)圆周率就是圆的周长除以它的直径所得的商. ( )

(2)圆的直径越大,圆周率越大. ( )

(3)圆的半径是3厘米,周长是9.42厘米. ( )

3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步

圆的周长教案 篇9

教学内容:

圆的周长的综合练习

教学目标:

通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。

教学重点:

理解圆的半径、直径、周长之间的关系

教学难点:

能运用知识解决一些实际问题

教学过程:

一、揭示课题

今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

板书课题:圆的周长

二、练习指导

基本练习(口答)

⑴在同一个圆内,所有的半径( ),所有的直径( ),直径是半径的( ),半径是直径的( )。

⑵( )决定圆的位置,( )决定圆的大小。

⑶什么是半径?什么是圆的直径?

⑷圆的周长总是它直径的( )倍,它是一个固定不变的数,用字母( )表示。

练习指导

1、求下面各圆的周长

d=2米 d=1.5厘米 r=6分米

2、求下面各圆的直径

C=28.26厘米 C=50.24米

3、求下面各圆的半径

C=12.56米 C=314厘米

以上几题均由学生板演,其余齐练

全班讲评,订正

三、解决实际问题

1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

①他一分钟可行驶多少米?

②他要通过2180米长的大桥,大约需要几分钟?

四、课终小结

今天我们练习了什么?你有什么收获?

《圆的周长教案模板合集9篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式